氦氩同位素对蓝宝石成因的指示Genesis of Sapphires Indicated by Helium and Argon Isotopes
郭伟,赵倩怡,贺怀宇
摘要(Abstract):
本文报道了斯里兰卡蓝宝石的氦、氩含量及同位素组成。采用真空压碎法获得蓝宝石流体包裹体中的氦、氩含量分别为3.7~4.9×10~(-6) cm~3STP/g和1.6~1.9×10~(-6) cm~3 STP/g,同位素组成分别为~3He/~4He=0.17~0.21 Ra和~(40)Ar/~(36)Ar=4348.7~4457.3。该特征与含刚玉的古老变质岩类似,接近纯地壳组分端元,指示其形成于壳内的变质作用过程。与山东省昌乐碱性玄武岩内岩浆成因的蓝宝石对比,发现二者具有显著不同的稀有气体同位素特征,其中昌乐蓝宝石含有强烈的幔源流体特征。提出稀有气体同位素及元素比值可有效判别蓝宝石的成因类型及形成过程。
关键词(KeyWords): 蓝宝石;斯里兰卡;稀有气体;氦―氩同位素
基金项目(Foundation): 国家自然科学基金青年基金(41903011)资助
作者(Author): 郭伟,赵倩怡,贺怀宇
参考文献(References):
- [1]Giuliani G,Groat L A.Geology of corundum and emerald gem deposits:a review[J].Gems&Gemology,2019,55(04):464-489.
- [2]Simonet C,Fritsch E,Lasnier B.A classification of gem corundum deposits aimed towards gem exploration[J].Ore Geology Reviews,2008,34(01):127-133.
- [3]Giuliani G,Fallick A E,Garnier V,et al.Oxygen isotopecomposition as a tracer for the origins of rubies and sapphires[J].Geology,2005,33(04):249-252.
- [4]Peucat J J,Ruffault P,Fritsch E,et al.Ga/Mg ratio as a new geochemical tool to differentiate magmatic from metamorphic blue sapphires[J].Lithos,2007,98(01):261-274.
- [5]Baldwin L C,Tomaschek F,Ballhaus C,et al.Petrogenesis of alkaline basalt-hosted sapphire megacrysts.Petrological and geochemical investigations of in situ sapphire occurrences from the Siebengebirge Volcanic Field,Germany[J].Contributions to Mineralogy and Petrology,2017,172(06):43.
- [6]Palke A C,Wong J,Verdel C,et al.A common origin for Thai/Cambodian rubies and blue and violet sapphires from Yogo Gulch,Montana,U.S.A.?[J].American Mineralogist,2018,103(03):469-479.
- [7]Akimova E Y,Kozlov E N,Lokhov K I.Origin of corundum rocks of the B elomorian mobile belt:Evidence from noble gas isotope geochemistry[J].Geochemistry International,2017,55(11):1000-1009.
- [8]He H,Zhu R,Saxton J.Noble gas isotopes in corundum and peridotite xenoliths from the eastern North China Craton:Implication for comprehensive refertilization of lithospheric mantle[J].Physics of the Earth and Planetary Interiors,2011,189(03-04):185-191.
- [9]Gautheron C,Moreira M.Helium signature of the subcontinental lithospheric mantle[J].Earth andPlanetary Science Letters,2002,199(01):39-47.
- [10]Kurz M D.Cosmogenic helium in a terrestrial igneous rock[J].Nature,1986,320(6061):435-439.
- [11]Ballentine C J,Burgess R,Marty B.Tracing Fluid Origin,Transport and Interaction in the Crust[J].Reviews in Mineralogy and Geochemistry,2002,47(01):539-614.
- [12]Moreira M,Kunz J,Allegre C.Rare gas systematics in popping rock:isotopic and elemental compositions in the upper mantle[J].Science,1998,279(5354):1178-1181.
- [13]Guo J,O'reilly S Y,Griffin W L.Corundum from basaltic terrains:a mineral inclusion approach to the enigma[J].Contributions to Mineralogy and Petrology,1996,122(04):368-386.
- [14]Hu W,Song Y,Chen X,et al.Noble gases in corundum megacrysts from the basalts in Changle,Shandong Province,eastern China[J].Chinese Science Bulletin,2007,52(03):380.
- [15]Liu J,Ni P,Shen K,et al.Liquid immiscibility recorded in melt inclusions within corundum from alkaline basalt,Changle area,Shandong province,Eastern China[J].Acta Petrologica Sinica,2007,23(01):125-130.
- [16]Elmaleh E,Schmidt S,Karampelas S,et al.U-Pb ages of zircon inclusions in sapphires from Ratnapura and Balagoda(Sri Lanka)and implications for geographic origin[J].Gems&Gemology,2019,55:18-28.